(0) Obligation:

JBC Problem based on JBC Program:
Manifest-Version: 1.0 Created-By: 1.6.0_16 (Sun Microsystems Inc.) Main-Class: Shuffle
public class Random {
static String[] args;
static int index = 0;

public static int random() {
String string = args[index];
index++;
return string.length();
}
}


public class Shuffle{

// adapted from [Walther, 94]
public static void main(String[] args) {
Random.args = args;
IntList l = IntList.createIntList();
IntList res = null;

while (l != null) {

res = new IntList(l.value, res);
l = l.next;
if (l != null) l = l.reverse();

}

}
}


class IntList {
int value;
IntList next;

public IntList(int value, IntList next) {
this.value = value;
this.next = next;
}


public static IntList createIntList() {

int i = Random.random();
int j;

IntList l = null;

while (i > 0) {
j = Random.random();
l = new IntList(j, l);
i--;
}

return l;
}

public IntList reverse() {

IntList res = null;
IntList l = this;

while (l != null) {
res = new IntList(l.value, res);
l = l.next;

}

return res;
}
}


(1) JBC2FIG (SOUND transformation)

Constructed FIGraph.

(2) Obligation:

FIGraph based on JBC Program:
Shuffle.main([Ljava/lang/String;)V: Graph of 72 nodes with 1 SCC.

IntList.createIntList()LIntList;: Graph of 164 nodes with 1 SCC.

IntList.reverse()LIntList;: Graph of 52 nodes with 1 SCC.


(3) FIGtoITRSProof (SOUND transformation)

Transformed FIGraph SCCs to IDPs. Logs:


Log for SCC 0:

Generated 44 rules for P and 3 rules for R.


Combined rules. Obtained 3 rules for P and 1 rules for R.


Filtered ground terms:


3120_0_reverse_Store(x1, x2, x3) → 3120_0_reverse_Store(x2, x3)
IntList(x1, x2, x3) → IntList(x2, x3)
2920_0_reverse_NULL(x1, x2, x3, x4) → 2920_0_reverse_NULL(x2, x3, x4)
2939_0_reverse_Return(x1, x2) → 2939_0_reverse_Return(x2)

Filtered duplicate args:


2920_0_reverse_NULL(x1, x2, x3) → 2920_0_reverse_NULL(x1, x3)

Finished conversion. Obtained 3 rules for P and 1 rules for R. System has no predefined symbols.




Log for SCC 1:

Generated 40 rules for P and 49 rules for R.


Combined rules. Obtained 2 rules for P and 0 rules for R.


Filtered ground terms:


IntList(x1) → IntList
2386_0_random_ArrayAccess(x1, x2, x3) → 2386_0_random_ArrayAccess(x2, x3)
2409_0_random_IntArithmetic(x1, x2, x3, x4) → 2409_0_random_IntArithmetic(x2, x3)

Filtered unneeded arguments:


2386_1_createIntList_InvokeMethod(x1, x2, x3) → 2386_1_createIntList_InvokeMethod(x1, x2)
Cond_2386_1_createIntList_InvokeMethod(x1, x2, x3, x4) → Cond_2386_1_createIntList_InvokeMethod(x1, x2, x3)
2409_1_createIntList_InvokeMethod(x1, x2, x3) → 2409_1_createIntList_InvokeMethod(x1, x2)
Cond_2409_1_createIntList_InvokeMethod(x1, x2, x3, x4) → Cond_2409_1_createIntList_InvokeMethod(x1, x2, x3)

Combined rules. Obtained 2 rules for P and 0 rules for R.


Finished conversion. Obtained 2 rules for P and 0 rules for R. System has predefined symbols.




Log for SCC 2:

Generated 36 rules for P and 56 rules for R.


Combined rules. Obtained 3 rules for P and 6 rules for R.


Filtered ground terms:


2330_0_main_NULL(x1, x2, x3, x4) → 2330_0_main_NULL(x2, x3, x4)
IntList(x1, x2, x3) → IntList(x2, x3)
2939_0_reverse_Return(x1, x2) → 2939_0_reverse_Return(x2)
2587_0_reverse_ConstantStackPush(x1, x2) → 2587_0_reverse_ConstantStackPush(x2)
2920_0_reverse_NULL(x1, x2, x3, x4) → 2920_0_reverse_NULL(x2, x3, x4)
3104_0_reverse_FieldAccess(x1, x2, x3) → 3104_0_reverse_FieldAccess(x2, x3)
2346_0_main_Return(x1) → 2346_0_main_Return

Filtered duplicate args:


2330_0_main_NULL(x1, x2, x3) → 2330_0_main_NULL(x2, x3)
2920_0_reverse_NULL(x1, x2, x3) → 2920_0_reverse_NULL(x1, x3)

Finished conversion. Obtained 3 rules for P and 6 rules for R. System has no predefined symbols.


(4) Complex Obligation (AND)

(5) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:
none


The ITRS R consists of the following rules:
2920_0_reverse_NULL(x0, NULL) → 2939_0_reverse_Return(x0)

The integer pair graph contains the following rules and edges:
(0): 3120_0_REVERSE_STORE(java.lang.Object(IntList(x0[0], x1[0])), x2[0]) → 2920_0_REVERSE_NULL(java.lang.Object(IntList(x0[0], x1[0])), x2[0])
(1): 2920_0_REVERSE_NULL(x0[1], java.lang.Object(IntList(x1[1], x2[1]))) → 2920_0_REVERSE_NULL(java.lang.Object(IntList(x1[1], x0[1])), x2[1])
(2): 2920_0_REVERSE_NULL(x0[2], java.lang.Object(IntList(x1[2], x2[2]))) → 3120_0_REVERSE_STORE(java.lang.Object(IntList(x1[2], x0[2])), x2[2])

(0) -> (1), if ((java.lang.Object(IntList(x0[0], x1[0])) →* x0[1])∧(x2[0]* java.lang.Object(IntList(x1[1], x2[1]))))


(0) -> (2), if ((java.lang.Object(IntList(x0[0], x1[0])) →* x0[2])∧(x2[0]* java.lang.Object(IntList(x1[2], x2[2]))))


(1) -> (1), if ((java.lang.Object(IntList(x1[1], x0[1])) →* x0[1]')∧(x2[1]* java.lang.Object(IntList(x1[1]', x2[1]'))))


(1) -> (2), if ((java.lang.Object(IntList(x1[1], x0[1])) →* x0[2])∧(x2[1]* java.lang.Object(IntList(x1[2], x2[2]))))


(2) -> (0), if ((java.lang.Object(IntList(x1[2], x0[2])) →* java.lang.Object(IntList(x0[0], x1[0])))∧(x2[2]* x2[0]))



The set Q consists of the following terms:
2920_0_reverse_NULL(x0, NULL)

(6) IDPtoQDPProof (SOUND transformation)

Represented integers and predefined function symbols by Terms

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

3120_0_REVERSE_STORE(java.lang.Object(IntList(x0[0], x1[0])), x2[0]) → 2920_0_REVERSE_NULL(java.lang.Object(IntList(x0[0], x1[0])), x2[0])
2920_0_REVERSE_NULL(x0[1], java.lang.Object(IntList(x1[1], x2[1]))) → 2920_0_REVERSE_NULL(java.lang.Object(IntList(x1[1], x0[1])), x2[1])
2920_0_REVERSE_NULL(x0[2], java.lang.Object(IntList(x1[2], x2[2]))) → 3120_0_REVERSE_STORE(java.lang.Object(IntList(x1[2], x0[2])), x2[2])

The TRS R consists of the following rules:

2920_0_reverse_NULL(x0, NULL) → 2939_0_reverse_Return(x0)

The set Q consists of the following terms:

2920_0_reverse_NULL(x0, NULL)

We have to consider all minimal (P,Q,R)-chains.

(8) UsableRulesProof (EQUIVALENT transformation)

As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

(9) Obligation:

Q DP problem:
The TRS P consists of the following rules:

3120_0_REVERSE_STORE(java.lang.Object(IntList(x0[0], x1[0])), x2[0]) → 2920_0_REVERSE_NULL(java.lang.Object(IntList(x0[0], x1[0])), x2[0])
2920_0_REVERSE_NULL(x0[1], java.lang.Object(IntList(x1[1], x2[1]))) → 2920_0_REVERSE_NULL(java.lang.Object(IntList(x1[1], x0[1])), x2[1])
2920_0_REVERSE_NULL(x0[2], java.lang.Object(IntList(x1[2], x2[2]))) → 3120_0_REVERSE_STORE(java.lang.Object(IntList(x1[2], x0[2])), x2[2])

R is empty.
The set Q consists of the following terms:

2920_0_reverse_NULL(x0, NULL)

We have to consider all minimal (P,Q,R)-chains.

(10) QReductionProof (EQUIVALENT transformation)

We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

2920_0_reverse_NULL(x0, NULL)

(11) Obligation:

Q DP problem:
The TRS P consists of the following rules:

3120_0_REVERSE_STORE(java.lang.Object(IntList(x0[0], x1[0])), x2[0]) → 2920_0_REVERSE_NULL(java.lang.Object(IntList(x0[0], x1[0])), x2[0])
2920_0_REVERSE_NULL(x0[1], java.lang.Object(IntList(x1[1], x2[1]))) → 2920_0_REVERSE_NULL(java.lang.Object(IntList(x1[1], x0[1])), x2[1])
2920_0_REVERSE_NULL(x0[2], java.lang.Object(IntList(x1[2], x2[2]))) → 3120_0_REVERSE_STORE(java.lang.Object(IntList(x1[2], x0[2])), x2[2])

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(12) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • 2920_0_REVERSE_NULL(x0[2], java.lang.Object(IntList(x1[2], x2[2]))) → 3120_0_REVERSE_STORE(java.lang.Object(IntList(x1[2], x0[2])), x2[2])
    The graph contains the following edges 2 > 2

  • 2920_0_REVERSE_NULL(x0[1], java.lang.Object(IntList(x1[1], x2[1]))) → 2920_0_REVERSE_NULL(java.lang.Object(IntList(x1[1], x0[1])), x2[1])
    The graph contains the following edges 2 > 2

  • 3120_0_REVERSE_STORE(java.lang.Object(IntList(x0[0], x1[0])), x2[0]) → 2920_0_REVERSE_NULL(java.lang.Object(IntList(x0[0], x1[0])), x2[0])
    The graph contains the following edges 1 >= 1, 2 >= 2

(13) YES

(14) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


R is empty.

The integer pair graph contains the following rules and edges:
(0): 2386_1_CREATEINTLIST_INVOKEMETHOD(2386_0_random_ArrayAccess(java.lang.Object(ARRAY(x0[0], x1[0])), x2[0]), x3[0]) → COND_2386_1_CREATEINTLIST_INVOKEMETHOD(x2[0] >= 1 && x2[0] < x0[0], 2386_0_random_ArrayAccess(java.lang.Object(ARRAY(x0[0], x1[0])), x2[0]), x3[0])
(1): COND_2386_1_CREATEINTLIST_INVOKEMETHOD(TRUE, 2386_0_random_ArrayAccess(java.lang.Object(ARRAY(x0[1], x1[1])), x2[1]), x3[1]) → 2409_1_CREATEINTLIST_INVOKEMETHOD(2409_0_random_IntArithmetic(x5[1], x6[1]), x3[1])
(2): 2409_1_CREATEINTLIST_INVOKEMETHOD(2409_0_random_IntArithmetic(java.lang.Object(java.lang.String(x0[2], x1[2])), x2[2]), x4[2]) → COND_2409_1_CREATEINTLIST_INVOKEMETHOD(x4[2] > 0 && x2[2] > 0 && 0 < x4[2] + -1, 2409_0_random_IntArithmetic(java.lang.Object(java.lang.String(x0[2], x1[2])), x2[2]), x4[2])
(3): COND_2409_1_CREATEINTLIST_INVOKEMETHOD(TRUE, 2409_0_random_IntArithmetic(java.lang.Object(java.lang.String(x0[3], x1[3])), x2[3]), x4[3]) → 2386_1_CREATEINTLIST_INVOKEMETHOD(2386_0_random_ArrayAccess(java.lang.Object(ARRAY(x6[3], x7[3])), x8[3]), x4[3] + -1)

(0) -> (1), if ((x2[0] >= 1 && x2[0] < x0[0]* TRUE)∧(2386_0_random_ArrayAccess(java.lang.Object(ARRAY(x0[0], x1[0])), x2[0]) →* 2386_0_random_ArrayAccess(java.lang.Object(ARRAY(x0[1], x1[1])), x2[1]))∧(x3[0]* x3[1]))


(1) -> (2), if ((2409_0_random_IntArithmetic(x5[1], x6[1]) →* 2409_0_random_IntArithmetic(java.lang.Object(java.lang.String(x0[2], x1[2])), x2[2]))∧(x3[1]* x4[2]))


(2) -> (3), if ((x4[2] > 0 && x2[2] > 0 && 0 < x4[2] + -1* TRUE)∧(2409_0_random_IntArithmetic(java.lang.Object(java.lang.String(x0[2], x1[2])), x2[2]) →* 2409_0_random_IntArithmetic(java.lang.Object(java.lang.String(x0[3], x1[3])), x2[3]))∧(x4[2]* x4[3]))


(3) -> (0), if ((2386_0_random_ArrayAccess(java.lang.Object(ARRAY(x6[3], x7[3])), x8[3]) →* 2386_0_random_ArrayAccess(java.lang.Object(ARRAY(x0[0], x1[0])), x2[0]))∧(x4[3] + -1* x3[0]))



The set Q is empty.

(15) IDPNonInfProof (SOUND transformation)

The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.


For Pair 2386_1_CREATEINTLIST_INVOKEMETHOD(2386_0_random_ArrayAccess(java.lang.Object(ARRAY(x0, x1)), x2), x3) → COND_2386_1_CREATEINTLIST_INVOKEMETHOD(&&(>=(x2, 1), <(x2, x0)), 2386_0_random_ArrayAccess(java.lang.Object(ARRAY(x0, x1)), x2), x3) the following chains were created:
  • We consider the chain 2386_1_CREATEINTLIST_INVOKEMETHOD(2386_0_random_ArrayAccess(java.lang.Object(ARRAY(x0[0], x1[0])), x2[0]), x3[0]) → COND_2386_1_CREATEINTLIST_INVOKEMETHOD(&&(>=(x2[0], 1), <(x2[0], x0[0])), 2386_0_random_ArrayAccess(java.lang.Object(ARRAY(x0[0], x1[0])), x2[0]), x3[0]), COND_2386_1_CREATEINTLIST_INVOKEMETHOD(TRUE, 2386_0_random_ArrayAccess(java.lang.Object(ARRAY(x0[1], x1[1])), x2[1]), x3[1]) → 2409_1_CREATEINTLIST_INVOKEMETHOD(2409_0_random_IntArithmetic(x5[1], x6[1]), x3[1]) which results in the following constraint:

    (1)    (&&(>=(x2[0], 1), <(x2[0], x0[0]))=TRUE2386_0_random_ArrayAccess(java.lang.Object(ARRAY(x0[0], x1[0])), x2[0])=2386_0_random_ArrayAccess(java.lang.Object(ARRAY(x0[1], x1[1])), x2[1])∧x3[0]=x3[1]2386_1_CREATEINTLIST_INVOKEMETHOD(2386_0_random_ArrayAccess(java.lang.Object(ARRAY(x0[0], x1[0])), x2[0]), x3[0])≥NonInfC∧2386_1_CREATEINTLIST_INVOKEMETHOD(2386_0_random_ArrayAccess(java.lang.Object(ARRAY(x0[0], x1[0])), x2[0]), x3[0])≥COND_2386_1_CREATEINTLIST_INVOKEMETHOD(&&(>=(x2[0], 1), <(x2[0], x0[0])), 2386_0_random_ArrayAccess(java.lang.Object(ARRAY(x0[0], x1[0])), x2[0]), x3[0])∧(UIncreasing(COND_2386_1_CREATEINTLIST_INVOKEMETHOD(&&(>=(x2[0], 1), <(x2[0], x0[0])), 2386_0_random_ArrayAccess(java.lang.Object(ARRAY(x0[0], x1[0])), x2[0]), x3[0])), ≥))



    We simplified constraint (1) using rules (I), (II), (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (2)    (>=(x2[0], 1)=TRUE<(x2[0], x0[0])=TRUE2386_1_CREATEINTLIST_INVOKEMETHOD(2386_0_random_ArrayAccess(java.lang.Object(ARRAY(x0[0], x1[0])), x2[0]), x3[0])≥NonInfC∧2386_1_CREATEINTLIST_INVOKEMETHOD(2386_0_random_ArrayAccess(java.lang.Object(ARRAY(x0[0], x1[0])), x2[0]), x3[0])≥COND_2386_1_CREATEINTLIST_INVOKEMETHOD(&&(>=(x2[0], 1), <(x2[0], x0[0])), 2386_0_random_ArrayAccess(java.lang.Object(ARRAY(x0[0], x1[0])), x2[0]), x3[0])∧(UIncreasing(COND_2386_1_CREATEINTLIST_INVOKEMETHOD(&&(>=(x2[0], 1), <(x2[0], x0[0])), 2386_0_random_ArrayAccess(java.lang.Object(ARRAY(x0[0], x1[0])), x2[0]), x3[0])), ≥))



    We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (3)    (x2[0] + [-1] ≥ 0∧x0[0] + [-1] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(COND_2386_1_CREATEINTLIST_INVOKEMETHOD(&&(>=(x2[0], 1), <(x2[0], x0[0])), 2386_0_random_ArrayAccess(java.lang.Object(ARRAY(x0[0], x1[0])), x2[0]), x3[0])), ≥)∧[(-1)bni_26 + (-1)Bound*bni_26] + [(2)bni_26]x3[0] ≥ 0∧[(-1)bso_27] ≥ 0)



    We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (4)    (x2[0] + [-1] ≥ 0∧x0[0] + [-1] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(COND_2386_1_CREATEINTLIST_INVOKEMETHOD(&&(>=(x2[0], 1), <(x2[0], x0[0])), 2386_0_random_ArrayAccess(java.lang.Object(ARRAY(x0[0], x1[0])), x2[0]), x3[0])), ≥)∧[(-1)bni_26 + (-1)Bound*bni_26] + [(2)bni_26]x3[0] ≥ 0∧[(-1)bso_27] ≥ 0)



    We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (5)    (x2[0] + [-1] ≥ 0∧x0[0] + [-1] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(COND_2386_1_CREATEINTLIST_INVOKEMETHOD(&&(>=(x2[0], 1), <(x2[0], x0[0])), 2386_0_random_ArrayAccess(java.lang.Object(ARRAY(x0[0], x1[0])), x2[0]), x3[0])), ≥)∧[(-1)bni_26 + (-1)Bound*bni_26] + [(2)bni_26]x3[0] ≥ 0∧[(-1)bso_27] ≥ 0)



    We simplified constraint (5) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (6)    (x2[0] + [-1] ≥ 0∧x0[0] + [-1] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(COND_2386_1_CREATEINTLIST_INVOKEMETHOD(&&(>=(x2[0], 1), <(x2[0], x0[0])), 2386_0_random_ArrayAccess(java.lang.Object(ARRAY(x0[0], x1[0])), x2[0]), x3[0])), ≥)∧[(2)bni_26] = 0∧0 = 0∧[(-1)bni_26 + (-1)Bound*bni_26] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_27] ≥ 0)



    We simplified constraint (6) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (7)    (x2[0] ≥ 0∧x0[0] + [-2] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(COND_2386_1_CREATEINTLIST_INVOKEMETHOD(&&(>=(x2[0], 1), <(x2[0], x0[0])), 2386_0_random_ArrayAccess(java.lang.Object(ARRAY(x0[0], x1[0])), x2[0]), x3[0])), ≥)∧[(2)bni_26] = 0∧0 = 0∧[(-1)bni_26 + (-1)Bound*bni_26] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_27] ≥ 0)



    We simplified constraint (7) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (8)    (x2[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_2386_1_CREATEINTLIST_INVOKEMETHOD(&&(>=(x2[0], 1), <(x2[0], x0[0])), 2386_0_random_ArrayAccess(java.lang.Object(ARRAY(x0[0], x1[0])), x2[0]), x3[0])), ≥)∧[(2)bni_26] = 0∧0 = 0∧[(-1)bni_26 + (-1)Bound*bni_26] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_27] ≥ 0)







For Pair COND_2386_1_CREATEINTLIST_INVOKEMETHOD(TRUE, 2386_0_random_ArrayAccess(java.lang.Object(ARRAY(x0, x1)), x2), x3) → 2409_1_CREATEINTLIST_INVOKEMETHOD(2409_0_random_IntArithmetic(x5, x6), x3) the following chains were created:
  • We consider the chain COND_2386_1_CREATEINTLIST_INVOKEMETHOD(TRUE, 2386_0_random_ArrayAccess(java.lang.Object(ARRAY(x0[1], x1[1])), x2[1]), x3[1]) → 2409_1_CREATEINTLIST_INVOKEMETHOD(2409_0_random_IntArithmetic(x5[1], x6[1]), x3[1]) which results in the following constraint:

    (9)    (COND_2386_1_CREATEINTLIST_INVOKEMETHOD(TRUE, 2386_0_random_ArrayAccess(java.lang.Object(ARRAY(x0[1], x1[1])), x2[1]), x3[1])≥NonInfC∧COND_2386_1_CREATEINTLIST_INVOKEMETHOD(TRUE, 2386_0_random_ArrayAccess(java.lang.Object(ARRAY(x0[1], x1[1])), x2[1]), x3[1])≥2409_1_CREATEINTLIST_INVOKEMETHOD(2409_0_random_IntArithmetic(x5[1], x6[1]), x3[1])∧(UIncreasing(2409_1_CREATEINTLIST_INVOKEMETHOD(2409_0_random_IntArithmetic(x5[1], x6[1]), x3[1])), ≥))



    We simplified constraint (9) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (10)    ((UIncreasing(2409_1_CREATEINTLIST_INVOKEMETHOD(2409_0_random_IntArithmetic(x5[1], x6[1]), x3[1])), ≥)∧[(-1)bso_29] ≥ 0)



    We simplified constraint (10) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (11)    ((UIncreasing(2409_1_CREATEINTLIST_INVOKEMETHOD(2409_0_random_IntArithmetic(x5[1], x6[1]), x3[1])), ≥)∧[(-1)bso_29] ≥ 0)



    We simplified constraint (11) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (12)    ((UIncreasing(2409_1_CREATEINTLIST_INVOKEMETHOD(2409_0_random_IntArithmetic(x5[1], x6[1]), x3[1])), ≥)∧[(-1)bso_29] ≥ 0)



    We simplified constraint (12) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (13)    ((UIncreasing(2409_1_CREATEINTLIST_INVOKEMETHOD(2409_0_random_IntArithmetic(x5[1], x6[1]), x3[1])), ≥)∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧[(-1)bso_29] ≥ 0)







For Pair 2409_1_CREATEINTLIST_INVOKEMETHOD(2409_0_random_IntArithmetic(java.lang.Object(java.lang.String(x0, x1)), x2), x4) → COND_2409_1_CREATEINTLIST_INVOKEMETHOD(&&(&&(>(x4, 0), >(x2, 0)), <(0, +(x4, -1))), 2409_0_random_IntArithmetic(java.lang.Object(java.lang.String(x0, x1)), x2), x4) the following chains were created:
  • We consider the chain 2409_1_CREATEINTLIST_INVOKEMETHOD(2409_0_random_IntArithmetic(java.lang.Object(java.lang.String(x0[2], x1[2])), x2[2]), x4[2]) → COND_2409_1_CREATEINTLIST_INVOKEMETHOD(&&(&&(>(x4[2], 0), >(x2[2], 0)), <(0, +(x4[2], -1))), 2409_0_random_IntArithmetic(java.lang.Object(java.lang.String(x0[2], x1[2])), x2[2]), x4[2]), COND_2409_1_CREATEINTLIST_INVOKEMETHOD(TRUE, 2409_0_random_IntArithmetic(java.lang.Object(java.lang.String(x0[3], x1[3])), x2[3]), x4[3]) → 2386_1_CREATEINTLIST_INVOKEMETHOD(2386_0_random_ArrayAccess(java.lang.Object(ARRAY(x6[3], x7[3])), x8[3]), +(x4[3], -1)) which results in the following constraint:

    (14)    (&&(&&(>(x4[2], 0), >(x2[2], 0)), <(0, +(x4[2], -1)))=TRUE2409_0_random_IntArithmetic(java.lang.Object(java.lang.String(x0[2], x1[2])), x2[2])=2409_0_random_IntArithmetic(java.lang.Object(java.lang.String(x0[3], x1[3])), x2[3])∧x4[2]=x4[3]2409_1_CREATEINTLIST_INVOKEMETHOD(2409_0_random_IntArithmetic(java.lang.Object(java.lang.String(x0[2], x1[2])), x2[2]), x4[2])≥NonInfC∧2409_1_CREATEINTLIST_INVOKEMETHOD(2409_0_random_IntArithmetic(java.lang.Object(java.lang.String(x0[2], x1[2])), x2[2]), x4[2])≥COND_2409_1_CREATEINTLIST_INVOKEMETHOD(&&(&&(>(x4[2], 0), >(x2[2], 0)), <(0, +(x4[2], -1))), 2409_0_random_IntArithmetic(java.lang.Object(java.lang.String(x0[2], x1[2])), x2[2]), x4[2])∧(UIncreasing(COND_2409_1_CREATEINTLIST_INVOKEMETHOD(&&(&&(>(x4[2], 0), >(x2[2], 0)), <(0, +(x4[2], -1))), 2409_0_random_IntArithmetic(java.lang.Object(java.lang.String(x0[2], x1[2])), x2[2]), x4[2])), ≥))



    We simplified constraint (14) using rules (I), (II), (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (15)    (<(0, +(x4[2], -1))=TRUE>(x4[2], 0)=TRUE>(x2[2], 0)=TRUE2409_1_CREATEINTLIST_INVOKEMETHOD(2409_0_random_IntArithmetic(java.lang.Object(java.lang.String(x0[2], x1[2])), x2[2]), x4[2])≥NonInfC∧2409_1_CREATEINTLIST_INVOKEMETHOD(2409_0_random_IntArithmetic(java.lang.Object(java.lang.String(x0[2], x1[2])), x2[2]), x4[2])≥COND_2409_1_CREATEINTLIST_INVOKEMETHOD(&&(&&(>(x4[2], 0), >(x2[2], 0)), <(0, +(x4[2], -1))), 2409_0_random_IntArithmetic(java.lang.Object(java.lang.String(x0[2], x1[2])), x2[2]), x4[2])∧(UIncreasing(COND_2409_1_CREATEINTLIST_INVOKEMETHOD(&&(&&(>(x4[2], 0), >(x2[2], 0)), <(0, +(x4[2], -1))), 2409_0_random_IntArithmetic(java.lang.Object(java.lang.String(x0[2], x1[2])), x2[2]), x4[2])), ≥))



    We simplified constraint (15) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (16)    (x4[2] + [-2] ≥ 0∧x4[2] + [-1] ≥ 0∧x2[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_2409_1_CREATEINTLIST_INVOKEMETHOD(&&(&&(>(x4[2], 0), >(x2[2], 0)), <(0, +(x4[2], -1))), 2409_0_random_IntArithmetic(java.lang.Object(java.lang.String(x0[2], x1[2])), x2[2]), x4[2])), ≥)∧[(-1)bni_30 + (-1)Bound*bni_30] + [(2)bni_30]x4[2] ≥ 0∧[(-1)bso_31] ≥ 0)



    We simplified constraint (16) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (17)    (x4[2] + [-2] ≥ 0∧x4[2] + [-1] ≥ 0∧x2[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_2409_1_CREATEINTLIST_INVOKEMETHOD(&&(&&(>(x4[2], 0), >(x2[2], 0)), <(0, +(x4[2], -1))), 2409_0_random_IntArithmetic(java.lang.Object(java.lang.String(x0[2], x1[2])), x2[2]), x4[2])), ≥)∧[(-1)bni_30 + (-1)Bound*bni_30] + [(2)bni_30]x4[2] ≥ 0∧[(-1)bso_31] ≥ 0)



    We simplified constraint (17) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (18)    (x4[2] + [-2] ≥ 0∧x4[2] + [-1] ≥ 0∧x2[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_2409_1_CREATEINTLIST_INVOKEMETHOD(&&(&&(>(x4[2], 0), >(x2[2], 0)), <(0, +(x4[2], -1))), 2409_0_random_IntArithmetic(java.lang.Object(java.lang.String(x0[2], x1[2])), x2[2]), x4[2])), ≥)∧[(-1)bni_30 + (-1)Bound*bni_30] + [(2)bni_30]x4[2] ≥ 0∧[(-1)bso_31] ≥ 0)



    We simplified constraint (18) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (19)    (x4[2] + [-2] ≥ 0∧x4[2] + [-1] ≥ 0∧x2[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_2409_1_CREATEINTLIST_INVOKEMETHOD(&&(&&(>(x4[2], 0), >(x2[2], 0)), <(0, +(x4[2], -1))), 2409_0_random_IntArithmetic(java.lang.Object(java.lang.String(x0[2], x1[2])), x2[2]), x4[2])), ≥)∧0 = 0∧0 = 0∧[(-1)bni_30 + (-1)Bound*bni_30] + [(2)bni_30]x4[2] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_31] ≥ 0)



    We simplified constraint (19) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (20)    (x4[2] ≥ 0∧[1] + x4[2] ≥ 0∧x2[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_2409_1_CREATEINTLIST_INVOKEMETHOD(&&(&&(>(x4[2], 0), >(x2[2], 0)), <(0, +(x4[2], -1))), 2409_0_random_IntArithmetic(java.lang.Object(java.lang.String(x0[2], x1[2])), x2[2]), x4[2])), ≥)∧0 = 0∧0 = 0∧[(3)bni_30 + (-1)Bound*bni_30] + [(2)bni_30]x4[2] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_31] ≥ 0)



    We simplified constraint (20) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (21)    (x4[2] ≥ 0∧[1] + x4[2] ≥ 0∧x2[2] ≥ 0 ⇒ (UIncreasing(COND_2409_1_CREATEINTLIST_INVOKEMETHOD(&&(&&(>(x4[2], 0), >(x2[2], 0)), <(0, +(x4[2], -1))), 2409_0_random_IntArithmetic(java.lang.Object(java.lang.String(x0[2], x1[2])), x2[2]), x4[2])), ≥)∧0 = 0∧0 = 0∧[(3)bni_30 + (-1)Bound*bni_30] + [(2)bni_30]x4[2] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_31] ≥ 0)







For Pair COND_2409_1_CREATEINTLIST_INVOKEMETHOD(TRUE, 2409_0_random_IntArithmetic(java.lang.Object(java.lang.String(x0, x1)), x2), x4) → 2386_1_CREATEINTLIST_INVOKEMETHOD(2386_0_random_ArrayAccess(java.lang.Object(ARRAY(x6, x7)), x8), +(x4, -1)) the following chains were created:
  • We consider the chain COND_2409_1_CREATEINTLIST_INVOKEMETHOD(TRUE, 2409_0_random_IntArithmetic(java.lang.Object(java.lang.String(x0[3], x1[3])), x2[3]), x4[3]) → 2386_1_CREATEINTLIST_INVOKEMETHOD(2386_0_random_ArrayAccess(java.lang.Object(ARRAY(x6[3], x7[3])), x8[3]), +(x4[3], -1)) which results in the following constraint:

    (22)    (COND_2409_1_CREATEINTLIST_INVOKEMETHOD(TRUE, 2409_0_random_IntArithmetic(java.lang.Object(java.lang.String(x0[3], x1[3])), x2[3]), x4[3])≥NonInfC∧COND_2409_1_CREATEINTLIST_INVOKEMETHOD(TRUE, 2409_0_random_IntArithmetic(java.lang.Object(java.lang.String(x0[3], x1[3])), x2[3]), x4[3])≥2386_1_CREATEINTLIST_INVOKEMETHOD(2386_0_random_ArrayAccess(java.lang.Object(ARRAY(x6[3], x7[3])), x8[3]), +(x4[3], -1))∧(UIncreasing(2386_1_CREATEINTLIST_INVOKEMETHOD(2386_0_random_ArrayAccess(java.lang.Object(ARRAY(x6[3], x7[3])), x8[3]), +(x4[3], -1))), ≥))



    We simplified constraint (22) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (23)    ((UIncreasing(2386_1_CREATEINTLIST_INVOKEMETHOD(2386_0_random_ArrayAccess(java.lang.Object(ARRAY(x6[3], x7[3])), x8[3]), +(x4[3], -1))), ≥)∧[2 + (-1)bso_33] ≥ 0)



    We simplified constraint (23) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (24)    ((UIncreasing(2386_1_CREATEINTLIST_INVOKEMETHOD(2386_0_random_ArrayAccess(java.lang.Object(ARRAY(x6[3], x7[3])), x8[3]), +(x4[3], -1))), ≥)∧[2 + (-1)bso_33] ≥ 0)



    We simplified constraint (24) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (25)    ((UIncreasing(2386_1_CREATEINTLIST_INVOKEMETHOD(2386_0_random_ArrayAccess(java.lang.Object(ARRAY(x6[3], x7[3])), x8[3]), +(x4[3], -1))), ≥)∧[2 + (-1)bso_33] ≥ 0)



    We simplified constraint (25) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (26)    ((UIncreasing(2386_1_CREATEINTLIST_INVOKEMETHOD(2386_0_random_ArrayAccess(java.lang.Object(ARRAY(x6[3], x7[3])), x8[3]), +(x4[3], -1))), ≥)∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧[2 + (-1)bso_33] ≥ 0)







To summarize, we get the following constraints P for the following pairs.
  • 2386_1_CREATEINTLIST_INVOKEMETHOD(2386_0_random_ArrayAccess(java.lang.Object(ARRAY(x0, x1)), x2), x3) → COND_2386_1_CREATEINTLIST_INVOKEMETHOD(&&(>=(x2, 1), <(x2, x0)), 2386_0_random_ArrayAccess(java.lang.Object(ARRAY(x0, x1)), x2), x3)
    • (x2[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_2386_1_CREATEINTLIST_INVOKEMETHOD(&&(>=(x2[0], 1), <(x2[0], x0[0])), 2386_0_random_ArrayAccess(java.lang.Object(ARRAY(x0[0], x1[0])), x2[0]), x3[0])), ≥)∧[(2)bni_26] = 0∧0 = 0∧[(-1)bni_26 + (-1)Bound*bni_26] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_27] ≥ 0)

  • COND_2386_1_CREATEINTLIST_INVOKEMETHOD(TRUE, 2386_0_random_ArrayAccess(java.lang.Object(ARRAY(x0, x1)), x2), x3) → 2409_1_CREATEINTLIST_INVOKEMETHOD(2409_0_random_IntArithmetic(x5, x6), x3)
    • ((UIncreasing(2409_1_CREATEINTLIST_INVOKEMETHOD(2409_0_random_IntArithmetic(x5[1], x6[1]), x3[1])), ≥)∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧[(-1)bso_29] ≥ 0)

  • 2409_1_CREATEINTLIST_INVOKEMETHOD(2409_0_random_IntArithmetic(java.lang.Object(java.lang.String(x0, x1)), x2), x4) → COND_2409_1_CREATEINTLIST_INVOKEMETHOD(&&(&&(>(x4, 0), >(x2, 0)), <(0, +(x4, -1))), 2409_0_random_IntArithmetic(java.lang.Object(java.lang.String(x0, x1)), x2), x4)
    • (x4[2] ≥ 0∧[1] + x4[2] ≥ 0∧x2[2] ≥ 0 ⇒ (UIncreasing(COND_2409_1_CREATEINTLIST_INVOKEMETHOD(&&(&&(>(x4[2], 0), >(x2[2], 0)), <(0, +(x4[2], -1))), 2409_0_random_IntArithmetic(java.lang.Object(java.lang.String(x0[2], x1[2])), x2[2]), x4[2])), ≥)∧0 = 0∧0 = 0∧[(3)bni_30 + (-1)Bound*bni_30] + [(2)bni_30]x4[2] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_31] ≥ 0)

  • COND_2409_1_CREATEINTLIST_INVOKEMETHOD(TRUE, 2409_0_random_IntArithmetic(java.lang.Object(java.lang.String(x0, x1)), x2), x4) → 2386_1_CREATEINTLIST_INVOKEMETHOD(2386_0_random_ArrayAccess(java.lang.Object(ARRAY(x6, x7)), x8), +(x4, -1))
    • ((UIncreasing(2386_1_CREATEINTLIST_INVOKEMETHOD(2386_0_random_ArrayAccess(java.lang.Object(ARRAY(x6[3], x7[3])), x8[3]), +(x4[3], -1))), ≥)∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧[2 + (-1)bso_33] ≥ 0)




The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:

POL(TRUE) = 0   
POL(FALSE) = 0   
POL(2386_1_CREATEINTLIST_INVOKEMETHOD(x1, x2)) = [-1] + [2]x2 + [-1]x1   
POL(2386_0_random_ArrayAccess(x1, x2)) = [-1] + [-1]x1   
POL(java.lang.Object(x1)) = x1   
POL(ARRAY(x1, x2)) = [-1]   
POL(COND_2386_1_CREATEINTLIST_INVOKEMETHOD(x1, x2, x3)) = [-1] + [2]x3 + [-1]x2   
POL(&&(x1, x2)) = [-1]   
POL(>=(x1, x2)) = [-1]   
POL(1) = [1]   
POL(<(x1, x2)) = [-1]   
POL(2409_1_CREATEINTLIST_INVOKEMETHOD(x1, x2)) = [-1] + [2]x2   
POL(2409_0_random_IntArithmetic(x1, x2)) = [-1] + [-1]x2 + [-1]x1   
POL(java.lang.String(x1, x2)) = [-1]x2 + [-1]x1   
POL(COND_2409_1_CREATEINTLIST_INVOKEMETHOD(x1, x2, x3)) = [-1] + [2]x3   
POL(>(x1, x2)) = [-1]   
POL(0) = 0   
POL(+(x1, x2)) = x1 + x2   
POL(-1) = [-1]   

The following pairs are in P>:

COND_2409_1_CREATEINTLIST_INVOKEMETHOD(TRUE, 2409_0_random_IntArithmetic(java.lang.Object(java.lang.String(x0[3], x1[3])), x2[3]), x4[3]) → 2386_1_CREATEINTLIST_INVOKEMETHOD(2386_0_random_ArrayAccess(java.lang.Object(ARRAY(x6[3], x7[3])), x8[3]), +(x4[3], -1))

The following pairs are in Pbound:

2409_1_CREATEINTLIST_INVOKEMETHOD(2409_0_random_IntArithmetic(java.lang.Object(java.lang.String(x0[2], x1[2])), x2[2]), x4[2]) → COND_2409_1_CREATEINTLIST_INVOKEMETHOD(&&(&&(>(x4[2], 0), >(x2[2], 0)), <(0, +(x4[2], -1))), 2409_0_random_IntArithmetic(java.lang.Object(java.lang.String(x0[2], x1[2])), x2[2]), x4[2])

The following pairs are in P:

2386_1_CREATEINTLIST_INVOKEMETHOD(2386_0_random_ArrayAccess(java.lang.Object(ARRAY(x0[0], x1[0])), x2[0]), x3[0]) → COND_2386_1_CREATEINTLIST_INVOKEMETHOD(&&(>=(x2[0], 1), <(x2[0], x0[0])), 2386_0_random_ArrayAccess(java.lang.Object(ARRAY(x0[0], x1[0])), x2[0]), x3[0])
COND_2386_1_CREATEINTLIST_INVOKEMETHOD(TRUE, 2386_0_random_ArrayAccess(java.lang.Object(ARRAY(x0[1], x1[1])), x2[1]), x3[1]) → 2409_1_CREATEINTLIST_INVOKEMETHOD(2409_0_random_IntArithmetic(x5[1], x6[1]), x3[1])
2409_1_CREATEINTLIST_INVOKEMETHOD(2409_0_random_IntArithmetic(java.lang.Object(java.lang.String(x0[2], x1[2])), x2[2]), x4[2]) → COND_2409_1_CREATEINTLIST_INVOKEMETHOD(&&(&&(>(x4[2], 0), >(x2[2], 0)), <(0, +(x4[2], -1))), 2409_0_random_IntArithmetic(java.lang.Object(java.lang.String(x0[2], x1[2])), x2[2]), x4[2])

There are no usable rules.

(16) Complex Obligation (AND)

(17) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


R is empty.

The integer pair graph contains the following rules and edges:
(0): 2386_1_CREATEINTLIST_INVOKEMETHOD(2386_0_random_ArrayAccess(java.lang.Object(ARRAY(x0[0], x1[0])), x2[0]), x3[0]) → COND_2386_1_CREATEINTLIST_INVOKEMETHOD(x2[0] >= 1 && x2[0] < x0[0], 2386_0_random_ArrayAccess(java.lang.Object(ARRAY(x0[0], x1[0])), x2[0]), x3[0])
(1): COND_2386_1_CREATEINTLIST_INVOKEMETHOD(TRUE, 2386_0_random_ArrayAccess(java.lang.Object(ARRAY(x0[1], x1[1])), x2[1]), x3[1]) → 2409_1_CREATEINTLIST_INVOKEMETHOD(2409_0_random_IntArithmetic(x5[1], x6[1]), x3[1])
(2): 2409_1_CREATEINTLIST_INVOKEMETHOD(2409_0_random_IntArithmetic(java.lang.Object(java.lang.String(x0[2], x1[2])), x2[2]), x4[2]) → COND_2409_1_CREATEINTLIST_INVOKEMETHOD(x4[2] > 0 && x2[2] > 0 && 0 < x4[2] + -1, 2409_0_random_IntArithmetic(java.lang.Object(java.lang.String(x0[2], x1[2])), x2[2]), x4[2])

(0) -> (1), if ((x2[0] >= 1 && x2[0] < x0[0]* TRUE)∧(2386_0_random_ArrayAccess(java.lang.Object(ARRAY(x0[0], x1[0])), x2[0]) →* 2386_0_random_ArrayAccess(java.lang.Object(ARRAY(x0[1], x1[1])), x2[1]))∧(x3[0]* x3[1]))


(1) -> (2), if ((2409_0_random_IntArithmetic(x5[1], x6[1]) →* 2409_0_random_IntArithmetic(java.lang.Object(java.lang.String(x0[2], x1[2])), x2[2]))∧(x3[1]* x4[2]))



The set Q is empty.

(18) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 3 less nodes.

(19) TRUE

(20) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


R is empty.

The integer pair graph contains the following rules and edges:
(0): 2386_1_CREATEINTLIST_INVOKEMETHOD(2386_0_random_ArrayAccess(java.lang.Object(ARRAY(x0[0], x1[0])), x2[0]), x3[0]) → COND_2386_1_CREATEINTLIST_INVOKEMETHOD(x2[0] >= 1 && x2[0] < x0[0], 2386_0_random_ArrayAccess(java.lang.Object(ARRAY(x0[0], x1[0])), x2[0]), x3[0])
(1): COND_2386_1_CREATEINTLIST_INVOKEMETHOD(TRUE, 2386_0_random_ArrayAccess(java.lang.Object(ARRAY(x0[1], x1[1])), x2[1]), x3[1]) → 2409_1_CREATEINTLIST_INVOKEMETHOD(2409_0_random_IntArithmetic(x5[1], x6[1]), x3[1])
(3): COND_2409_1_CREATEINTLIST_INVOKEMETHOD(TRUE, 2409_0_random_IntArithmetic(java.lang.Object(java.lang.String(x0[3], x1[3])), x2[3]), x4[3]) → 2386_1_CREATEINTLIST_INVOKEMETHOD(2386_0_random_ArrayAccess(java.lang.Object(ARRAY(x6[3], x7[3])), x8[3]), x4[3] + -1)

(3) -> (0), if ((2386_0_random_ArrayAccess(java.lang.Object(ARRAY(x6[3], x7[3])), x8[3]) →* 2386_0_random_ArrayAccess(java.lang.Object(ARRAY(x0[0], x1[0])), x2[0]))∧(x4[3] + -1* x3[0]))


(0) -> (1), if ((x2[0] >= 1 && x2[0] < x0[0]* TRUE)∧(2386_0_random_ArrayAccess(java.lang.Object(ARRAY(x0[0], x1[0])), x2[0]) →* 2386_0_random_ArrayAccess(java.lang.Object(ARRAY(x0[1], x1[1])), x2[1]))∧(x3[0]* x3[1]))



The set Q is empty.

(21) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 3 less nodes.

(22) TRUE

(23) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:
none


The ITRS R consists of the following rules:
2330_0_main_NULL(x0, NULL) → 2346_0_main_Return
2587_0_reverse_ConstantStackPush(java.lang.Object(x0)) → 2920_0_reverse_NULL(NULL, java.lang.Object(x0))
2920_0_reverse_NULL(x0, NULL) → 2939_0_reverse_Return(x0)
2920_0_reverse_NULL(x0, java.lang.Object(IntList(x1, x2))) → 2920_0_reverse_NULL(java.lang.Object(IntList(x1, x0)), x2)
2920_0_reverse_NULL(x0, java.lang.Object(IntList(x1, x2))) → 3104_0_reverse_FieldAccess(java.lang.Object(IntList(x1, x0)), java.lang.Object(IntList(x1, x2)))
3104_0_reverse_FieldAccess(java.lang.Object(IntList(x0, x1)), java.lang.Object(IntList(x0, x2))) → 2920_0_reverse_NULL(java.lang.Object(IntList(x0, x1)), x2)

The integer pair graph contains the following rules and edges:
(0): 2330_0_MAIN_NULL(x2[0], java.lang.Object(IntList(x0[0], java.lang.Object(x1[0])))) → 2587_1_MAIN_INVOKEMETHOD(2587_0_reverse_ConstantStackPush(java.lang.Object(x1[0])), java.lang.Object(IntList(x0[0], x2[0])), java.lang.Object(x1[0]))
(1): 2587_1_MAIN_INVOKEMETHOD(2939_0_reverse_Return(x0[1]), java.lang.Object(IntList(x1[1], x2[1])), java.lang.Object(x3[1])) → 2330_0_MAIN_NULL(java.lang.Object(IntList(x1[1], x2[1])), x0[1])
(2): 2330_0_MAIN_NULL(x1[2], java.lang.Object(IntList(x0[2], NULL))) → 2330_0_MAIN_NULL(java.lang.Object(IntList(x0[2], x1[2])), NULL)

(0) -> (1), if ((2587_0_reverse_ConstantStackPush(java.lang.Object(x1[0])) →* 2939_0_reverse_Return(x0[1]))∧(java.lang.Object(IntList(x0[0], x2[0])) →* java.lang.Object(IntList(x1[1], x2[1])))∧(java.lang.Object(x1[0]) →* java.lang.Object(x3[1])))


(1) -> (0), if ((java.lang.Object(IntList(x1[1], x2[1])) →* x2[0])∧(x0[1]* java.lang.Object(IntList(x0[0], java.lang.Object(x1[0])))))


(1) -> (2), if ((java.lang.Object(IntList(x1[1], x2[1])) →* x1[2])∧(x0[1]* java.lang.Object(IntList(x0[2], NULL))))


(2) -> (0), if ((java.lang.Object(IntList(x0[2], x1[2])) →* x2[0])∧(NULL* java.lang.Object(IntList(x0[0], java.lang.Object(x1[0])))))


(2) -> (2), if ((java.lang.Object(IntList(x0[2], x1[2])) →* x1[2]')∧(NULL* java.lang.Object(IntList(x0[2]', NULL))))



The set Q consists of the following terms:
2330_0_main_NULL(x0, NULL)
2587_0_reverse_ConstantStackPush(java.lang.Object(x0))
2920_0_reverse_NULL(x0, NULL)
2920_0_reverse_NULL(x0, java.lang.Object(IntList(x1, x2)))
3104_0_reverse_FieldAccess(java.lang.Object(IntList(x0, x1)), java.lang.Object(IntList(x0, x2)))

(24) IDPtoQDPProof (SOUND transformation)

Represented integers and predefined function symbols by Terms

(25) Obligation:

Q DP problem:
The TRS P consists of the following rules:

2330_0_MAIN_NULL(x2[0], java.lang.Object(IntList(x0[0], java.lang.Object(x1[0])))) → 2587_1_MAIN_INVOKEMETHOD(2587_0_reverse_ConstantStackPush(java.lang.Object(x1[0])), java.lang.Object(IntList(x0[0], x2[0])), java.lang.Object(x1[0]))
2587_1_MAIN_INVOKEMETHOD(2939_0_reverse_Return(x0[1]), java.lang.Object(IntList(x1[1], x2[1])), java.lang.Object(x3[1])) → 2330_0_MAIN_NULL(java.lang.Object(IntList(x1[1], x2[1])), x0[1])
2330_0_MAIN_NULL(x1[2], java.lang.Object(IntList(x0[2], NULL))) → 2330_0_MAIN_NULL(java.lang.Object(IntList(x0[2], x1[2])), NULL)

The TRS R consists of the following rules:

2330_0_main_NULL(x0, NULL) → 2346_0_main_Return
2587_0_reverse_ConstantStackPush(java.lang.Object(x0)) → 2920_0_reverse_NULL(NULL, java.lang.Object(x0))
2920_0_reverse_NULL(x0, NULL) → 2939_0_reverse_Return(x0)
2920_0_reverse_NULL(x0, java.lang.Object(IntList(x1, x2))) → 2920_0_reverse_NULL(java.lang.Object(IntList(x1, x0)), x2)
2920_0_reverse_NULL(x0, java.lang.Object(IntList(x1, x2))) → 3104_0_reverse_FieldAccess(java.lang.Object(IntList(x1, x0)), java.lang.Object(IntList(x1, x2)))
3104_0_reverse_FieldAccess(java.lang.Object(IntList(x0, x1)), java.lang.Object(IntList(x0, x2))) → 2920_0_reverse_NULL(java.lang.Object(IntList(x0, x1)), x2)

The set Q consists of the following terms:

2330_0_main_NULL(x0, NULL)
2587_0_reverse_ConstantStackPush(java.lang.Object(x0))
2920_0_reverse_NULL(x0, NULL)
2920_0_reverse_NULL(x0, java.lang.Object(IntList(x1, x2)))
3104_0_reverse_FieldAccess(java.lang.Object(IntList(x0, x1)), java.lang.Object(IntList(x0, x2)))

We have to consider all minimal (P,Q,R)-chains.

(26) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.

(27) Obligation:

Q DP problem:
The TRS P consists of the following rules:

2587_1_MAIN_INVOKEMETHOD(2939_0_reverse_Return(x0[1]), java.lang.Object(IntList(x1[1], x2[1])), java.lang.Object(x3[1])) → 2330_0_MAIN_NULL(java.lang.Object(IntList(x1[1], x2[1])), x0[1])
2330_0_MAIN_NULL(x2[0], java.lang.Object(IntList(x0[0], java.lang.Object(x1[0])))) → 2587_1_MAIN_INVOKEMETHOD(2587_0_reverse_ConstantStackPush(java.lang.Object(x1[0])), java.lang.Object(IntList(x0[0], x2[0])), java.lang.Object(x1[0]))

The TRS R consists of the following rules:

2330_0_main_NULL(x0, NULL) → 2346_0_main_Return
2587_0_reverse_ConstantStackPush(java.lang.Object(x0)) → 2920_0_reverse_NULL(NULL, java.lang.Object(x0))
2920_0_reverse_NULL(x0, NULL) → 2939_0_reverse_Return(x0)
2920_0_reverse_NULL(x0, java.lang.Object(IntList(x1, x2))) → 2920_0_reverse_NULL(java.lang.Object(IntList(x1, x0)), x2)
2920_0_reverse_NULL(x0, java.lang.Object(IntList(x1, x2))) → 3104_0_reverse_FieldAccess(java.lang.Object(IntList(x1, x0)), java.lang.Object(IntList(x1, x2)))
3104_0_reverse_FieldAccess(java.lang.Object(IntList(x0, x1)), java.lang.Object(IntList(x0, x2))) → 2920_0_reverse_NULL(java.lang.Object(IntList(x0, x1)), x2)

The set Q consists of the following terms:

2330_0_main_NULL(x0, NULL)
2587_0_reverse_ConstantStackPush(java.lang.Object(x0))
2920_0_reverse_NULL(x0, NULL)
2920_0_reverse_NULL(x0, java.lang.Object(IntList(x1, x2)))
3104_0_reverse_FieldAccess(java.lang.Object(IntList(x0, x1)), java.lang.Object(IntList(x0, x2)))

We have to consider all minimal (P,Q,R)-chains.

(28) UsableRulesProof (EQUIVALENT transformation)

As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

(29) Obligation:

Q DP problem:
The TRS P consists of the following rules:

2587_1_MAIN_INVOKEMETHOD(2939_0_reverse_Return(x0[1]), java.lang.Object(IntList(x1[1], x2[1])), java.lang.Object(x3[1])) → 2330_0_MAIN_NULL(java.lang.Object(IntList(x1[1], x2[1])), x0[1])
2330_0_MAIN_NULL(x2[0], java.lang.Object(IntList(x0[0], java.lang.Object(x1[0])))) → 2587_1_MAIN_INVOKEMETHOD(2587_0_reverse_ConstantStackPush(java.lang.Object(x1[0])), java.lang.Object(IntList(x0[0], x2[0])), java.lang.Object(x1[0]))

The TRS R consists of the following rules:

2587_0_reverse_ConstantStackPush(java.lang.Object(x0)) → 2920_0_reverse_NULL(NULL, java.lang.Object(x0))
2920_0_reverse_NULL(x0, java.lang.Object(IntList(x1, x2))) → 3104_0_reverse_FieldAccess(java.lang.Object(IntList(x1, x0)), java.lang.Object(IntList(x1, x2)))
3104_0_reverse_FieldAccess(java.lang.Object(IntList(x0, x1)), java.lang.Object(IntList(x0, x2))) → 2920_0_reverse_NULL(java.lang.Object(IntList(x0, x1)), x2)
2920_0_reverse_NULL(x0, java.lang.Object(IntList(x1, x2))) → 2920_0_reverse_NULL(java.lang.Object(IntList(x1, x0)), x2)
2920_0_reverse_NULL(x0, NULL) → 2939_0_reverse_Return(x0)

The set Q consists of the following terms:

2330_0_main_NULL(x0, NULL)
2587_0_reverse_ConstantStackPush(java.lang.Object(x0))
2920_0_reverse_NULL(x0, NULL)
2920_0_reverse_NULL(x0, java.lang.Object(IntList(x1, x2)))
3104_0_reverse_FieldAccess(java.lang.Object(IntList(x0, x1)), java.lang.Object(IntList(x0, x2)))

We have to consider all minimal (P,Q,R)-chains.

(30) QReductionProof (EQUIVALENT transformation)

We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

2330_0_main_NULL(x0, NULL)

(31) Obligation:

Q DP problem:
The TRS P consists of the following rules:

2587_1_MAIN_INVOKEMETHOD(2939_0_reverse_Return(x0[1]), java.lang.Object(IntList(x1[1], x2[1])), java.lang.Object(x3[1])) → 2330_0_MAIN_NULL(java.lang.Object(IntList(x1[1], x2[1])), x0[1])
2330_0_MAIN_NULL(x2[0], java.lang.Object(IntList(x0[0], java.lang.Object(x1[0])))) → 2587_1_MAIN_INVOKEMETHOD(2587_0_reverse_ConstantStackPush(java.lang.Object(x1[0])), java.lang.Object(IntList(x0[0], x2[0])), java.lang.Object(x1[0]))

The TRS R consists of the following rules:

2587_0_reverse_ConstantStackPush(java.lang.Object(x0)) → 2920_0_reverse_NULL(NULL, java.lang.Object(x0))
2920_0_reverse_NULL(x0, java.lang.Object(IntList(x1, x2))) → 3104_0_reverse_FieldAccess(java.lang.Object(IntList(x1, x0)), java.lang.Object(IntList(x1, x2)))
3104_0_reverse_FieldAccess(java.lang.Object(IntList(x0, x1)), java.lang.Object(IntList(x0, x2))) → 2920_0_reverse_NULL(java.lang.Object(IntList(x0, x1)), x2)
2920_0_reverse_NULL(x0, java.lang.Object(IntList(x1, x2))) → 2920_0_reverse_NULL(java.lang.Object(IntList(x1, x0)), x2)
2920_0_reverse_NULL(x0, NULL) → 2939_0_reverse_Return(x0)

The set Q consists of the following terms:

2587_0_reverse_ConstantStackPush(java.lang.Object(x0))
2920_0_reverse_NULL(x0, NULL)
2920_0_reverse_NULL(x0, java.lang.Object(IntList(x1, x2)))
3104_0_reverse_FieldAccess(java.lang.Object(IntList(x0, x1)), java.lang.Object(IntList(x0, x2)))

We have to consider all minimal (P,Q,R)-chains.

(32) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


2587_1_MAIN_INVOKEMETHOD(2939_0_reverse_Return(x0[1]), java.lang.Object(IntList(x1[1], x2[1])), java.lang.Object(x3[1])) → 2330_0_MAIN_NULL(java.lang.Object(IntList(x1[1], x2[1])), x0[1])
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO]:

POL(2330_0_MAIN_NULL(x1, x2)) = x2   
POL(2587_0_reverse_ConstantStackPush(x1)) = 1 + x1   
POL(2587_1_MAIN_INVOKEMETHOD(x1, x2, x3)) = x1   
POL(2920_0_reverse_NULL(x1, x2)) = 1 + x1 + x2   
POL(2939_0_reverse_Return(x1)) = 1 + x1   
POL(3104_0_reverse_FieldAccess(x1, x2)) = x1 + x2   
POL(IntList(x1, x2)) = 1 + x2   
POL(NULL) = 0   
POL(java.lang.Object(x1)) = x1   

The following usable rules [FROCOS05] were oriented:

2587_0_reverse_ConstantStackPush(java.lang.Object(x0)) → 2920_0_reverse_NULL(NULL, java.lang.Object(x0))
3104_0_reverse_FieldAccess(java.lang.Object(IntList(x0, x1)), java.lang.Object(IntList(x0, x2))) → 2920_0_reverse_NULL(java.lang.Object(IntList(x0, x1)), x2)
2920_0_reverse_NULL(x0, java.lang.Object(IntList(x1, x2))) → 3104_0_reverse_FieldAccess(java.lang.Object(IntList(x1, x0)), java.lang.Object(IntList(x1, x2)))
2920_0_reverse_NULL(x0, java.lang.Object(IntList(x1, x2))) → 2920_0_reverse_NULL(java.lang.Object(IntList(x1, x0)), x2)
2920_0_reverse_NULL(x0, NULL) → 2939_0_reverse_Return(x0)

(33) Obligation:

Q DP problem:
The TRS P consists of the following rules:

2330_0_MAIN_NULL(x2[0], java.lang.Object(IntList(x0[0], java.lang.Object(x1[0])))) → 2587_1_MAIN_INVOKEMETHOD(2587_0_reverse_ConstantStackPush(java.lang.Object(x1[0])), java.lang.Object(IntList(x0[0], x2[0])), java.lang.Object(x1[0]))

The TRS R consists of the following rules:

2587_0_reverse_ConstantStackPush(java.lang.Object(x0)) → 2920_0_reverse_NULL(NULL, java.lang.Object(x0))
2920_0_reverse_NULL(x0, java.lang.Object(IntList(x1, x2))) → 3104_0_reverse_FieldAccess(java.lang.Object(IntList(x1, x0)), java.lang.Object(IntList(x1, x2)))
3104_0_reverse_FieldAccess(java.lang.Object(IntList(x0, x1)), java.lang.Object(IntList(x0, x2))) → 2920_0_reverse_NULL(java.lang.Object(IntList(x0, x1)), x2)
2920_0_reverse_NULL(x0, java.lang.Object(IntList(x1, x2))) → 2920_0_reverse_NULL(java.lang.Object(IntList(x1, x0)), x2)
2920_0_reverse_NULL(x0, NULL) → 2939_0_reverse_Return(x0)

The set Q consists of the following terms:

2587_0_reverse_ConstantStackPush(java.lang.Object(x0))
2920_0_reverse_NULL(x0, NULL)
2920_0_reverse_NULL(x0, java.lang.Object(IntList(x1, x2)))
3104_0_reverse_FieldAccess(java.lang.Object(IntList(x0, x1)), java.lang.Object(IntList(x0, x2)))

We have to consider all minimal (P,Q,R)-chains.

(34) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(35) TRUE